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Abstract

In this paper, the non-linear vibration, including the transverse shear, is investigated for composite beams
with an arbitrary delamination through the width. The effects of different positions and sizes of the
delamination on non-linear vibration of beams are considered. The amplitude–frequency curves of non-
linear free vibration are obtained.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The composite materials, due to their specific natures, have been applied widely in the
engineering. However, the static and the dynamic features of the composite constructions will be
affected significantly by the delaminations that occur in the imperfect manufacturing or in
loading. Therefore, the static and dynamics studies for delaminated composite constructions are
very important.

Non-linear dynamic analysis of beams have been of considerable research interest in the recent
years. Xia et al. [1] analyzed the harmonic responses of beams with longitudinal and transversal
coupling by the incremental harmonic balance method. Kar and Dwiredy [2,3] investigated the
non-linear dynamic behavior of a slender beam carrying a lumped mass subjected to principal
parametric base excitation. The vibration of a split beam was researched by Wang et al. [4]. They
observed that the fundamental frequency was not visibly reduced due to the short delamination.
Later, the vibrations of a symmetric delaminated beam plate relative to buckled were researched
by Yin and Jane [5]. They obtained that some new vibration modes and frequencies depend
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sensitively on the delamination length, the location and on the magnitude of the post-buckling
load. Moreover, Chane and Liane [6] studied the free vibrations of delaminated beam plates with
respect to post-buckling referential states.

The study about non-linear vibration of composite beams with arbitrary delamination is scarce.
In this paper, the beams with an arbitrary delamination through the width are divided into four
regions. The basic equations are built in each region and the continuous conditions are founded.
The B-specimen functions are used to describe the variations in the space, and the dimensionless
differential equations about time are obtained by using Galerkin’s method. Finally, the
amplitude–frequency curves of the non-linear vibration of composite beams with an arbitrary
delamination are obtained by using the incremental harmonic balance method [7].

2. Basic equations

Consider a composite beam with an arbitrary delamination under the axial force N0 and the
transverse distributed force p and the beam is divided into four regions, respectively denoted I–IV
as shown in Fig. 1. Supposing the thickness h in regions I and IV h2 in regions II, h3 in regions III,
also h2 þ h3 ¼ h; the width is one unit, The distances from the middle surface of each region to the
top or bottom surface of the beam are, respectively, denoted by ti

1 and ti
2 and the upper marks

i=I–IV.
Now, consider a general beam, the displacement components u and w of any point that include

the effect of transverse shear deformation may be described as follows:

uðx; z; tÞ ¼ u0ðx; tÞ � zfðx; tÞ; wðx; z; tÞ ¼ w0ðx; tÞ; ð1Þ

where u0 and w0 are the values of u and w at the middle surface and f is the rotation angle of the
normal to the middle surface in the xz-plane. Taking the Green non-linear strain–displacement
relations, we obtain

ex ¼ u0
;x � zf;x þ

1
2
w2
;x; gxz ¼ w;x � f: ð2Þ

Because of sy ¼ tyz ¼ txy ¼ 0; the stress–strain relation for the kth layer can be written as
follows:

sðkÞx

sðkÞzx

( )
¼

C
ðkÞ
11 C

ðkÞ
15

C
ðkÞ
15 C

ðkÞ
55

" #
ex

gzx

( )
; ð3Þ
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Fig. 1. Configuration of beam with an arbitrary delamination.
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in which sðkÞij and eij are the Kirchoff stress components and the Lagrange strain components,
respectively, and C

ðkÞ
ij are elastic stiffnesses in the kth layer, The membrane stress resultants N; the

shear force Q and the stress couples M are obtained as follows:

� N ¼ A1u0
;x þ

1
2
A1w2

;x � B1f;x þ A2w;x � A2f;

Q ¼ A2u0
;x þ

1
2
A2w2

;x � B2f;x þ A3w;x � A3f;

M ¼ B1u0
;x þ

1
2
B1w2

;x þ D1f;x þ B2w;x � B2f; ð4Þ

where A1; A2; A3; B1; B2 and D1 are the integral constants related to material and geometrical
parameters of the transverse section, and

A1 ¼
R t1
�t2

c
ðkÞ
11 dz; A2 ¼

R t1
�t2

c
ðkÞ
15 dz; A3 ¼

R t1
�t2

c
ðkÞ
55 dz;

B1 ¼
R t1
�t2

zc
ðkÞ
11 dz; B2 ¼

R t1
�t2

zc
ðkÞ
15 dz; D1 ¼

R t1
�t2

z2c
ðkÞ
11 dz;

where A2 ¼ B2 ¼ 0; if we only consider the special orthotropic composite ðCðkÞ
15 ¼ 0Þ beam and

B1 ¼ 0; if the x-axis is set at neutral layer of the beam.
Neglecting the influence of axial inertia and rotary inertia and considering the equilibrium in x

and z directions, the non-linear equations of motion of the beam can be written

N;x þ %gðQfÞ;x ¼ 0;

Q;x � ðNw;xÞ;x þ p � rA .w ¼ 0;

Q � M;x ¼ 0; ð5Þ

where %g is a factor of shear force representing the influence of shear force on the axial force [8].
The influence is considered when %g ¼ 1; and the influence is neglected when %g ¼ 0: The influence
always is considered in present analysis, so, %g always equals 1.

Eliminating u0 from Eq. (4), substituting the expressions of Q and M into Eq. (5) and only
considering the special orthotropic composite beam, we obtain

N;x þ A3ðw;xx � f;xÞfþ A3ðw;x � fÞf;x ¼ 0;

A3ðw;xx � f;xÞ � Nw;xx � N;xw;x þ p � rA .w ¼ 0;

D1f;xx þ A3ðw;x � fÞ ¼ 0: ð6Þ

Introducing the dimensionless parameters as follows:

xi ¼
xi

li
; zi ¼

zi

h
; W i ¼

wi

h
; Fi ¼ fi; ai

1 ¼
ti
1

h
; ai

2 ¼
ti
2

h
;

bi ¼
h

li
; ki ¼

li

l
; t ¼

t

l

ffiffiffiffiffiffiffiffi
AI

1

rdh

s
; Pi ¼

pili

AI
1

;

%Ci ¼
A3

AI
1

; %Di ¼
Di

1

AI
1h2

%Ni ¼
Ni

AI
1

; %Qi ¼
Qi

AI
1

; %Mi ¼
Mi

AI
1h
; ð7Þ

where xi; zi; xi and zi are the local co-ordination, substituting Eq. (7) into Eq. (6) and considering
each region for the delaminated beam, respectively, we obtain the dimensionless governing
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equations for the delaminated beam

%Ni
1x þ %CiðbiW i

;xx � Fi
;xÞF

i þ %CiðbiW i
;x � FiÞFi

;x ¼ 0;

%CiðbiW i
xx � Fi

;xÞ � bi %NiW i
;xx � bi %Ni

;xW
i
;x þ Pi � biki2 .Wi ¼ 0;

%Dibi2Fi
;xx þ %CiðbiW i

;x � FiÞ ¼ 0: ð8Þ

The dimensionless expressions of internal forces are

%Mi ¼ %DibiFi
;x; %Qi ¼ %Ciðbi %Wi

;x � FiÞ: ð9Þ

The dimensionless boundary conditions are

at xI ¼ 0; %NI;W I or %QI þ %NIW I
;xb

I;FI or %MI are given

at xIV ¼ 1; %NIV;W IV or %QIV þ %NIVW IV
;x bIV;FIV or %MIV are given: ð10Þ

The dimensionless continuity conditions for the displacements are
At the left end of the delamination:

W I ¼ W II; FI ¼ FII;

W I ¼ W III; FI ¼ FIII:

At the right end of the delamination:

W IV ¼ W II; FIV ¼ FII;

W IV ¼ W III; FIV ¼ FIII: ð11Þ

The dimensionless equilibrium conditions for the internal forces are
At the left section of the delamination:

%MI ¼ %MII þ %MIII; %QI ¼ %QII þ %QIII;

%NI ¼ %NII þ %NIII:

At the right section of the delamination:

%MIV ¼ %MII þ %MIII; %QIV ¼ %QII þ %QIII;

%NIV ¼ %NII þ %NIII: ð12Þ

3. Method of solution

As in Refs. [8,11], considering the additional axial force influenced by non-linear, we separate
the axial force into two terms. The first term describes the axial force applied at the two ends, the
second term describes the varying axial force with dimensionless co-ordinate x and the force being
influenced by geometrical non-linear deformation. So, as usual a solution of Eq. (8) is sought in
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the separable form

%Ni ¼ gi %N0ðtÞ þ
XSiþ1

m¼�1

Ni
mðtÞF

i
mðxÞ;

W i ¼
XSiþ1

m¼�1

W i
mðtÞG

i
mðxÞ;

Fi ¼
XSiþ1

m¼�1

Fi
mðtÞG

i0

mðxÞ; ð13Þ

in which, gi ¼ 1when i ¼ I; IV; gII þ gIII ¼ 1 when i ¼ II; III and their values are distributed
according to the ratio of AII

1 and AIII
1 : The Ni

m;W
i
m and Fi

m are the functions of the time t: Fi
mðxÞ

and Gi
mðxÞ are the basic functions of x that, respectively, relates to cubic B-specimen functions

O3ðxÞ and five order B-specimen functions O5ðxÞ: And suppose that the each region is divided
evenly by Di ¼ 1=Si; si is the number of specimen points in the region i:

The general expressions of Fi
mðxÞ are

Fi
mðxÞ ¼ O3

x
Di

� m

	 

:

Note that N0ðtÞ has satisfied the boundary conditions with zero when let gi ¼ 1 in Eq. (13), in
order to satisfy the boundary conditions for second term of axial force equating zero at both ends
in Eq. (13) the some of the expressions must be changed as follows:

F I
0ðxÞ ¼ O3

x
DI

	 

� 4O3

x
DI

� 1

	 

;

F I
1ðxÞ ¼ O3

x
DI

	 

� 4O3

x
DI

þ 1

	 

;

F IV
sIV�1ðxÞ ¼ O3

x
DIV

� sIV
	 


� 4O3
x
DIV

� sIV þ 1

	 

;

F IV
sIV ðxÞ ¼ O3

x
DIV

� sIV
	 


� 4O3
x
DIV

� sIV � 1

	 

;

in which, the expression of O3ðxÞ is

O3ðxÞ ¼
1

6

ðx þ 2Þ3; xA½�2;�1�;

ðx þ 2Þ3 � 4ðx þ 1Þ3; xA½�1; 0�;

ð2� xÞ3 � 4ð1� xÞ3; xA½0; 1�;

ð2� xÞ3; xA½1; 2�;

0; jxjX2:

8>>>>>>><
>>>>>>>:

The general expressions of Gi
mðxÞ are

Gi
mðxÞ ¼ O5

x
Di

� m

	 

:
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However, some of the expressions must be changed as follows for satisfying the simple
supported boundary conditions at both ends

GI
0ðxÞ ¼ O5

x
DI

	 

� 3O5

x
DI

þ 1

	 

þ 12O5

x
DI

þ 2

	 

;

GI
1ðxÞ ¼ O5

x
DI

� 1

	 

� O5

x
DI

þ 1

	 

;

GI
2ðxÞ ¼ O5

x
DI

	 

� 3O5

x
DI

� 1

	 

þ 12O5

x
DI

� 2

	 

;

GIV
sIV�2ðxÞ ¼ O5

x
DIV

� sIV
	 


� 3O5
x
DIV

� sIV þ 1

	 

þ 12O5

x
DIV

� sIV þ 2

	 

;

GIV
sIV�1ðxÞ ¼ �O5

x
DIV

� sIV � 1

	 

þ O5

x
DIV

� sIV þ 1

	 

;

GIV
sIVðxÞ ¼ O5

x
DIV

� sIV
	 


� 3O5
x
DIV

� sIV � 1

	 

þ 12O5

x
DIV

� sIV � 2

	 


and for the clamped boundary conditions at both ends

GI
0ðxÞ ¼ O5

x
DI

þ 1

	 

�

16

66
O5

x
DI

	 

� 10O5

x
DI

þ 2

	 

;

GI
1ðxÞ ¼ �

26

33
O5

x
DI

	 

þ O5

x
DI

� 1

	 

þ O5

x
DI

þ 1

	 

;

GI
2ðxÞ ¼ �10O5

x
DI

� 2

	 

þ O5

x
DI

� 1

	 

�

16

66
O5

x
DI

	 

;

GIV
sIV�2ðxÞ ¼ �10O5

x
DIV

� sIV þ 2

	 

þ O5

x
DIV

� sIV þ 1

	 

�

16

66
O5

x
DIV

� sIV
	 


;

GIV
sIV�1ðxÞ ¼ �

26

33
O5

x
DIV

� sIV
	 


þ O5
x
DIV

� sIV � 1

	 

þ O5

x
DIV

� sIV þ 1

	 

;

GIV
sIVðxÞ ¼ O5

x
DIV

� sIV � 1

	 

�

16

66
O5

x
DIV

� sIV
	 


� 10O5
x
DIV

� sIV � 2

	 

;

in which, the expression of O5ðxÞ is

O5ðxÞ ¼
1

120

ðx þ 3Þ5; xA½�3;�2�;

ðx þ 3Þ5 � 6ðx þ 2Þ5; xA½�2;�1�;

ðx þ 3Þ5 � 6ðx þ 2Þ5 � 15ðx þ 1Þ5; xA½�1; 0�;

ð3� xÞ5 � 6ð2 � xÞ5 þ 15ð1� xÞ5; xA½0; 1�;

ð3� xÞ5 � 6ð2 � xÞ5; xA½1; 2�;

ð3� xÞ5; xA½2; 3�;

0; jxjX3:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
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According to the above expressions, the Fi
m and Gi

m can satisfy the displacement conditions at
both ends when ma� 1 and si þ 1:

Substituting Eq. (13) into Eq. (8), performing the Galerkin’s integrations in each region,
resolving out the Ni

m from the first resulting equation, then substituting Ni
m into the latter two

resulting equations we obtain

ðai
4mj þ gi %N0ai

13mjÞW
i
m þ ai

5mjF
i
m þ ai

16kmnjW
i
kF

i
mW i

n

þ ai
17kmnjF

i
kF

i
mW i

n þ ai
7jP

i þ ai
8mj

.Wi
m ¼ 0;

ai
18mnjW

i
mF

i
n þ ai

10mjF
i
m þ ai

11mjW
i
m þ ai

19mnjF
i
mF

i
n ¼ 0; ð14Þ

where ai
4;y; ai

19 are the integral constant that relate to the Fi
mðxÞ and Gi

mðxÞ:
Eq. (14) are the basic governing equations for solving the non-linear vibrations of the

delaminated beams. In these equations, the coupling of longitudinal and transversal motions and
the effect of transverse shear deformation are included. Due to the number of unknown quantities
is reduced, so that, the solving of the basic equations becomes easy.

Substituting Eq. (13) into the expressions of internal forces, boundary conditions and
continuous conditions, also the corresponding expressions can be obtained.

The external loads on the beam are supposed in the following forms:

PiðtÞ ¼ Pi
0 þ Pi

tcos yt;

%N0ðtÞ ¼ N0 þ Ntcos yt: ð15Þ

Using the incremental harmonic method and setting

Nt ¼ N0t þ DNt; Pi
t ¼ Pi

0t þ DPi
t; y ¼ y0 þ Dy;

W i
m ¼ W i

0m þ DW i
m; Fi

m ¼ Fi
0m þ DFi

m ð16Þ

letting %t ¼ yt; %t0 ¼ y0t; D%t ¼ Dyt; and substituting Eqs. (15) and (16) into Eq. (14), we obtain:

ai
8mjy

2
0D .Wi

m þ ðbi
1mj þ bi

2mjcos%tÞDW i
m þ bi

3mjDF
i
m

¼ ri
1j � 2y0Li

1jDy� Li
2jDPi

t � Li
3jDNt;

bi
4mjDW i

m þ bi
5mjDF

i
m ¼ ri

2j; ð17Þ

where bi
1mj ; bi

5mj; Li
1j;y;Li

3j;y are the constants that related to ai
1;y; ai

19; W i
0m and Fi

0m: The
residuals ri

1j and ri
2j can be written as follows:

ri
1j ¼ � ðai

4mj þ giN0ai
13mj þ giN0ta

i
13mj cos %tÞW

i
0m

� ai
5mjF

i
0m � ai

16kmnjW
i
0kF

i
0mW i

0n

� ai
17kmnjF

i
0kF

i
0mW i

0n � ai
7jP

i
0 � ai

7jP
i
0t cos %t � ai

8mjy
2
0
.Wi
0m;

ri
2j ¼ � ai

18mnjW
i
0mF

i
0n � ai

10mjF
i
0m � ai

11mjW
i
0m � ai

19mnjF
i
0mF

i
0n: ð18Þ

Eq. (17) can be solved for the unknown functions DW i
m; DFi

m and Dy when a set of
W i

0m;F
i
0m and N0 is given in which the corresponding increment is set to zero at each incremental

step. By carrying out the incremental computation procedure as presented in Ref. [8], the exciting
frequency y; the transverse deflection W i

m and the rotation angle Fi
m can be determined.
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4. Numerical results and discussion

Numerical results for non-linear free vibration of composite beams with an arbitrary
delamination are presented. Set

N0t ¼ DNt ¼ 0; Pi
0 ¼ Pi

0t ¼ DPi
t ¼ 0

and expand the unknowns W i
0m; Fi

0m; DW i
m and DFi

m into Fourier series in %t:

W i
0mð%tÞ ¼

XN
k¼0;1;2;y

Ai
km sin

k%t

2
þ Bi

km cos
k%t

2

	 

;

Fi
0mð%tÞ ¼

XN
k¼0;1;2;y

Ci
km sin

k%t

2
þ Di

km cos
k%t

2

	 

;

DW i
mð%tÞ ¼

XN
k¼0;1;2;y

DAi
km sin

k%t

2
þ DBi

km cos
k%t

2

	 

;

DFi
mð%tÞ ¼

XN
k¼0;1;2;y

DCi
km sin

k%t

2
þ DDi

km cos
k%t

2

	 

: ð19Þ

Substituting Eq. (19) into Eq. (17), and equating the coefficients of sin ðk%t=2Þ and cos ðk%t=2Þ
terms, a set of linear algebraic equation can be obtained as follows:

bi
6mjDW i

m þ bi
3mjDF

i
m ¼ ri

1j � 2y0Li
1jDy;

bi
4mjDW i

m þ bi
5mjDF

i
m ¼ r2j; ð20Þ

where bi
6mj ¼ ai

8mjððk=2Þy0Þ
2 þ bi

1mj:
In the solving processes, only the lowest vibration model of the beam is considered. y1

represents the dimensionless foundational frequency. And take k ¼ 0; 1; 2; 3; 4 for Eq. (19) in the
calculation.

According to the above methods, vibration analysis (Ref. [9]) and buckling analysis (Ref. [12])
of composite beams with arbitrary delamination have been given. In Ref. [9], the dimensionless
foundational frequencies of beams without delamination are calculated by using present method
and are compared with by theory and the maximum error is 0.83%. In Ref. [12], the dimensionless
buckling loads of composite beams with delamination are calculated according to the present
method and are compared with the results in Ref. [13], and the two results are identical. These
show that present methods are correct.

In Figs. 2–6, the amplitude–frequency curves of non-linear free vibration of the composite beam
with clamping of two ends are plotted. Suppose the number of layers is five 0
/90
/0
/90
/0
,
l ¼ 1m, l=h ¼ 30; %l1 ¼ l1=l that represents the delaminated position in x direction, %h2 ¼ h2=h that
represents the delaminated position in z direction, %k ¼ l2=l that represents the delaminated length.
And y1 is the fundamental linear foundational frequency and Wmax is the maximum displacement
in z direction. Also the material elastic constants of the beam in each layer [10] are: E1 ¼
172:4 GPa; E2 ¼ 7:79 GPa; G12 ¼ 5:3 GPa; n12 ¼ 0:21:

Figs. 2 and 3 show that the frequency are larger with larger amplitude in non-linear free
vibration. A harder non-linear character is shown in the amplitude–frequency response curves. As
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the amplitude is small, the frequency increases greatly with the amplitude. However, as the
amplitude is larger, the frequency increases slowly with the amplitude. As the amplitude is further
larger, the frequency also increases greatly with the amplitude.
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Fig. 2. Amplitude–frequency response curves in each region: ð %N0 ¼ 0:8 %Ncr; %k ¼ 0:1; %l1 ¼ 0:45; %h2 ¼ 0:2Þ:
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Fig. 3. Amplitude–frequency response curves in each region: ð %N0 ¼ 0:8 %Ncr; %k ¼ 0:1; %l1 ¼ 0:45; %h2 ¼ 0:4Þ:
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Fig. 4. Effects of the different positions of delamination on the amplitude–frequency response curves: ð %N0 ¼
0:8 %Ncr; %k ¼ 0:1; %h2 ¼ 0:2Þ:
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The amplitude–frequency response curves are compared for different positions of delamination
in Fig. 4. The effects of the different positions of delamination on the amplitude–frequency
response curves are small and this character is similar to that in Ref. [9]. As the amplitude is
larger, the effects become obvious. But as the amplitude is further larger, the effects become
weaken.

The amplitude–frequency response curves are compared for different length of delamination in
Fig. 5. As the amplitude is small, the frequency is larger with the length of delamination being
longer. As the amplitude is larger and the length of delamination increases, the non-linear
character becomes weak, i.e., hard shape from strong hard shape. So the frequency increases
slowly with the longer length of delamination.

The effects of the transverse shear deformation on the amplitude–frequency response curves is
shown in Fig. 6. It indicates that the influence of transverse shear deformation cannot be ignored
for non-linear vibration of composite beam.

A comparison of the amplitude–frequency response curves for different materials is shown in
Fig. 7. The other two materials are boron-epoxy composite material [10] and glass-epoxy
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Fig. 5. Effects of the different length of delamination on the amplitude–frequency response curves: ð %N0 ¼ 0:8 %Ncr; %l1 ¼
1=2ð1� %kÞ; %h2 ¼ 0:2Þ:
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Fig. 6. Effects of the transverse shear deformation on the amplitude–frequency response curves: ð %N0 ¼ 0:8 %Ncr; %k ¼
0:1; %h2 ¼ 0:2; %l1 ¼ 0:45Þ:
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composite material [11] and the material constants are: E1 ¼ 137:9 GPa; E2 ¼ 14:48 GPa; G12 ¼
5:86 GPa; n21 ¼ 0:21 and E1 ¼ 53:8 GPa; E2 ¼ 17:93 GPa; G12 ¼ 8:96 GPa;n21 ¼ 0:25: As the
amplitude is small, the effects of the different material on the amplitude–frequency response cures
are small. As the amplitude is larger, the hard characters of the non-linear vibration become
obvious with the larger ratio of E1=E2:
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